MM Algebra Ms. Peng/ Mr. Villegas Name _____

Date:

Aim: How do we solve word problems using Exponential Functions? (Feb 12)

- 1) William invested \$600 in a savings account at a 1.6% annual interest rate. He made no deposits or withdrawals on the account for 2 years. The interest was compounded annually.
 - a) Determine <u>the initial count (a)</u>, <u>the rate (r)</u>, and <u>growth or decay factor (b)</u>.

a =____ $b = (1 \pm r) =$ _____

- b) Write a function that can be used to determine the balance in the account after t years.
- c) Find to the nearest cent, the balance in the account after 2 years.
- d) Graph the function and estimate the number of years (t) would take William to double his investment.

t	
0	
1	
2	
3	
4	
5	

- 2) The country of Benin in West Africa has a population of 9.05 million people. The population is growing at a rate of 3.1% each year.
 - a) Determine <u>the initial count (a)</u>, <u>the rate (r)</u>, and <u>growth or decay factor (b)</u>.

a =_____ b = $(1 \pm r)$ = _____

- b) Write a function that can be used to determine the population x years from now.
- c) Find to the nearest whole number, the population of Benin 7 years from now.

3) Mario's car depreciates in value and can be defined by the function $V = 15,000(0.81)^t$.

Ashely's car depreciates in value too. Her car's depreciation can be defined by $V = 15,000(0.9)^{2t}$. a) Calculate the value for Mario's and Ashely's cars after 6 years.

DAY	$\frac{\text{Mario's Car Value}}{V = 15,000(0.81)^{t}}.$	$\frac{\text{Ashely's Car Value}}{V = 15,000(0.9)^{2t}}$
1		
2		
3		
4		
5		
6		

b) Based on the depreciation from both functions, explain the relationship between the two functions.

4) A car was purchased for \$25,000. Research shows that the car has an average yearly depreciation rate of 18.5%.

a) Determine *the initial count (a), the rate (r)*, and *growth or decay factor (b)*.

a =_____ b = $(1 \pm r)$ =_____

b) Create a function that will determine the value, V(t), of the car t years after purchase.

c) Determine, to the nearest cent, how much the car will depreciate from years 3 to year 4.