\qquad
\qquad

Aim: How do we solve word problems using Exponential Functions? (Feb 12)

1) William invested $\$ 600$ in a savings account at a 1.6% annual interest rate. He made no deposits or withdrawals on the account for 2 years. The interest was compounded annually.
a) Determine the initial count (a), the rate (r), and growth or decay factor (b).

$$
a=
$$

b) Write a function that can be used to determine the balance in the account after t years.
c) Find to the nearest cent, the balance in the account after 2 years.
d) Graph the function and estimate the number of years (t) would take William to double his investment.

t	
0	
1	
2	
3	
4	
5	

2) The country of Benin in West Africa has a population of 9.05 million people. The population is growing at a rate of 3.1% each year.
a) Determine the initial count (a), the rate (r), and growth or decay factor (b).

$$
a=\square \quad r=\ldots
$$

b) Write a function that can be used to determine the population x years from now.
c) Find to the nearest whole number, the population of Benin 7 years from now.
3) Mario's car depreciates in value and can be defined by the function $V=15,000(0.81)^{t}$. Ashely's car depreciates in value too. Her car's depreciation can be defined by $V=15,000(0.9)^{2 t}$.
a) Calculate the value for Mario's and Ashely's cars after 6 years.

$\underline{\text { DAY }}$	Mario's Car Value $V=15,000(0.81)^{t}$.	Ashely's Car Value $V=15,000(0.9)^{2 t}$
$\mathbf{1}$		
$\mathbf{2}$		
$\mathbf{3}$		
$\mathbf{4}$		
$\mathbf{5}$		
$\mathbf{6}$		

b) Based on the depreciation from both functions, explain the relationship between the two functions.
4) A car was purchased for $\$ 25,000$. Research shows that the car has an average yearly depreciation rate of 18.5%.
a) Determine the initial count (a), the rate (r), and growth or decay factor (b).

$$
a=\quad r=\ldots \quad b=(1 \pm r)=
$$

b) Create a function that will determine the value, $\mathrm{V}(\mathrm{t})$, of the car t years after purchase.
c) Determine, to the nearest cent, how much the car will depreciate from years 3 to year 4 .

